Friday, 22 December 2017

انقر نقرا مزدوجا تتحرك من المتوسط التنبؤ


متحرك متوسط ​​التنبؤ التنبؤ. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط ​​المتحرك. نقل متوسط ​​التوقعات. الجميع على دراية بتحرك توقعات المتوسط ​​بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهزان في كل مكان في جميع أنحاء المكان، وإذا كنت بدأت تفعل الكثير من الدراسة يمكنك الحصول على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط ​​التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط ​​المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط ​​التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط ​​المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط ​​على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط ​​المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط ​​المتحرك للمتوسط ​​m، لا يتوقع إلا أن تستخدم معظم قيم البيانات الأخيرة في التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط ​​المتحرك للمتوسط ​​m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط ​​المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط ​​المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الوظيفة على جدول البيانات بحيث تظهر نتيجة الحساب حيث ترغب في ما يلي. السلسلة الزمنية هي سلسلة من الملاحظات للمتغير العشوائي الدوري. ومن الأمثلة على ذلك الطلب الشهري على المنتج، والتسجيل السنوي للطالب في إحدى أقسام الجامعة والتدفقات اليومية في النهر. تعتبر السلاسل الزمنية مهمة لبحوث العمليات لأنها غالبا ما تكون المحركات لنماذج القرار. ويتطلب نموذج الجرد تقديرات للطلبات المستقبلية، وجدول الدورات التدريبية ونموذج التوظيف لقسم الجامعة يتطلب تقديرات لتدفق الطلاب في المستقبل، ونموذج لتوفير التحذيرات للسكان في حوض النهر يتطلب تقديرات لتدفقات الأنهار في المستقبل القريب. يوفر تحليل السلاسل الزمنية أدوات لاختيار نموذج يصف السلاسل الزمنية واستخدام النموذج للتنبؤ بالأحداث المستقبلية. نمذجة السلاسل الزمنية هي مشكلة إحصائية لأن البيانات الملحوظة تستخدم في الإجراءات الحسابية لتقدير معاملات النموذج المفترض. تفترض النماذج أن الملاحظات تختلف عشوائيا حول القيمة المتوسطة الكامنة التي هي دالة للوقت. في هذه الصفحات نقصر الانتباه إلى استخدام بيانات السلاسل الزمنية التاريخية لتقدير نموذج معتمد على الوقت. والأساليب مناسبة للتنبؤ التلقائي القصير الأجل بالمعلومات التي كثيرا ما تستخدم حيث لا تتغير الأسباب الكامنة وراء تغير الوقت بشكل ملحوظ في الوقت المناسب. ومن الناحية العملية، يعدل المحللون البشريون التنبؤات المستمدة من هذه الأساليب فيما بعد، والتي تتضمن معلومات غير متاحة من البيانات التاريخية. هدفنا الأساسي في هذا القسم هو تقديم معادلات لأساليب التنبؤ الأربعة المستخدمة في إضافة التنبؤ: المتوسط ​​المتحرك، التماسك الأسي، الانحدار والتجانس الأسي المزدوج. وتسمى هذه الطرق تمهيد. وتشمل الطرق التي لم تؤخذ في الاعتبار التنبؤ النوعي، والانحدار المتعدد، وطرق الانحدار الذاتي (أريما). يجب على المهتمين بتغطية أوسع نطاقا زيارة موقع مبادئ التنبؤ أو قراءة أحد الكتب الممتازة العديدة حول هذا الموضوع. استخدمنا كتاب التنبؤ. بواسطة ماكريداكيس، ويلوريت و ماكجي، جون ويلي أمب سونس، 1983. لاستخدام مصنف إكسيل أمثلة، يجب أن يكون لديك وظيفة التنبيه الإضافية المثبتة. اختر الأمر ريلينك لإنشاء الارتباطات إلى الوظيفة الإضافية. تصف هذه الصفحة النماذج المستخدمة للتنبؤ البسيط والتدوين المستخدم للتحليل. وهذه الطريقة الأبسط للتنبؤ هي توقعات المتوسط ​​المتحرك. الطريقة ببساطة المتوسطات من الملاحظات م الماضية. ومن المفيد لسلاسل الوقت مع المتوسط ​​المتغير ببطء. هذه الطريقة تأخذ في الاعتبار الماضي كله في توقعاتها، ولكن يزن التجربة الأخيرة أكثر بكثير من أقل حداثة. الحسابات بسيطة لأنه فقط تقدير الفترة السابقة والبيانات الحالية تحديد التقدير الجديد. طريقة مفيدة لسلسلة زمنية مع المتوسط ​​المتغير ببطء. لا تستجيب طريقة المتوسط ​​المتحرك بشكل جيد لسلسلة زمنية تزيد أو تنخفض بمرور الوقت. نحن هنا تشمل مصطلح الاتجاه الخطي في النموذج. طريقة الانحدار تقترب من النموذج عن طريق بناء معادلة خطية توفر المربعات الصغرى التي تناسب آخر ملاحظات m. Forecasting بواسطة تقنيات التمهيد هذا الموقع هو جزء من جافا سكريبت المختبرات الإلكترونية كائنات التعلم لاتخاذ القرارات. يتم تصنيف جافا سكريبت أخرى في هذه السلسلة ضمن مجالات مختلفة من التطبيقات في قسم مينو في هذه الصفحة. سلسلة زمنية هي سلسلة من الملاحظات التي يتم ترتيبها في الوقت المناسب. ومن العوامل المتأصلة في جمع البيانات المأخوذة على مر الزمن شكل من أشكال الاختلاف العشوائي. هناك طرق للحد من إلغاء التأثير بسبب الاختلاف العشوائي. التقنيات المستخدمة على نطاق واسع هي تمهيد. وتكشف هذه التقنيات، عندما تطبق بشكل صحيح، عن الاتجاهات الكامنة بشكل أوضح. أدخل السلاسل الزمنية بالصفوف في التسلسل، بدءا من الزاوية العلوية اليسرى، والمعلمة (المعلمات)، ثم انقر على الزر حساب للحصول على التنبؤ قبل فترة واحدة. لا يتم تضمين صناديق فارغة في الحسابات ولكن الأصفار هي. في إدخال البيانات الخاصة بك للانتقال من خلية إلى خلية في مصفوفة البيانات استخدام مفتاح تاب لا السهم أو إدخال مفاتيح. ملامح السلاسل الزمنية، والتي يمكن كشفها من خلال فحص الرسم البياني. مع القيم المتوقعة، والسلوك المتبقي، والنمذجة حالة التنبؤ. المتوسطات المتحركة: تعد المتوسطات المتحركة من بين أكثر التقنيات شعبية في المعالجة المسبقة للمسلسلات الزمنية. وهي تستخدم لتصفية الضوضاء البيضاء العشوائية من البيانات، لجعل السلاسل الزمنية أكثر سلاسة أو حتى للتأكيد على بعض العناصر الإعلامية الواردة في السلاسل الزمنية. الأسي تجانس: هذا هو مخطط شعبية جدا لإنتاج سلسة سلسلة الوقت. في حين أن المتوسطات المتحركة يتم ترجيح الملاحظات السابقة بالتساوي، فإن التسييل الأسي يعين الأوزان المتناقصة بشكل كبير مع تقدم الملاحظة. وبعبارة أخرى، تعطي الملاحظات الأخيرة وزنا أكبر نسبيا في التنبؤ من الملاحظات القديمة. ضعف الأسي تجانس أفضل في التعامل مع الاتجاهات. الثلاثي الأسي تجانس أفضل في التعامل مع اتجاهات القطع المكافئ. متوسط ​​متحرك مرجح أسي مع ثابت التمهيد a. يقابل تقريبا متوسط ​​متحرك بسيط للطول (أي الفترة) n، حيث تكون a و n مرتبطة بما يلي: 2 (n1) أو n (2 - a) a. وهكذا، على سبيل المثال، فإن المتوسط ​​المتحرك المرجح ألسيا مع ثابت التمهيد يساوي 0.1 من شأنه أن يتوافق تقريبا إلى 19 المتوسط ​​المتحرك اليوم. والمتوسط ​​المتحرك البسيط لمدة 40 يوما من شأنه أن يتوافق تقريبا مع متوسط ​​متحرك مرجح أسي مع ثابت ثابت يساوي 0.04878. هولتس الخطي الأسي تمهيد: لنفترض أن السلسلة الزمنية غير الموسمية ولكن لا عرض الاتجاه. طريقة هولتس تقدر كل من المستوى الحالي والاتجاه الحالي. لاحظ أن المتوسط ​​المتحرك البسيط هو حالة خاصة للتلطيف الأسي عن طريق تحديد فترة المتوسط ​​المتحرك إلى الجزء الصحيح من ألفا (ألفا) ألفا. بالنسبة لمعظم بيانات الأعمال تكون معلمة ألفا أصغر من 0.40 فعالة في كثير من الأحيان. ومع ذلك، يمكن للمرء إجراء بحث شبكة من مساحة المعلمة، مع 0.1 إلى 0.9، مع زيادات من 0.1. ثم أفضل ألفا لديه أصغر خطأ المطلق يعني (خطأ ما). كيفية مقارنة عدة طرق للتجانس: على الرغم من وجود مؤشرات رقمية لتقييم دقة تقنية التنبؤ، فإن النهج الأكثر انتشارا هو استخدام مقارنة مرئية لعدة تنبؤات لتقييم دقتها والاختيار من بين مختلف أساليب التنبؤ. في هذا النهج، يجب على المرء أن مؤامرة (باستخدام، على سبيل المثال إكسيل) على نفس الرسم البياني القيم الأصلية لمتغير سلسلة زمنية والقيم المتوقعة من عدة طرق التنبؤ المختلفة، مما يسهل المقارنة البصرية. قد ترغب في استخدام التوقعات السابقة من قبل تقنيات تجانس جافاسكريبت للحصول على القيم السابقة التنبؤ على أساس تقنيات تمهيد التي تستخدم معلمة واحدة فقط. هولت، وطرق الشتاء تستخدم اثنين وثلاثة معلمات، على التوالي، وبالتالي فإنه ليس من السهل مهمة لتحديد الأمثل، أو حتى بالقرب من القيم المثلى من قبل التجربة والأخطاء للمعلمات. ويؤكد التمهيد الأسي المفرد على المنظور القصير المدى الذي يحدد المستوى للمراقبة الأخيرة ويستند إلى شرط عدم وجود اتجاه. إن الانحدار الخطي، الذي يناسب خط المربعات الصغرى على البيانات التاريخية (أو البيانات التاريخية المحولة)، يمثل المدى الطويل، الذي يشترط الاتجاه الأساسي. هولتس الخطي الأسي تجانس يلتقط المعلومات حول الاتجاه الأخير. والمعلمات في نموذج هولتس هي معلمة المستويات التي ينبغي أن تنخفض عندما يكون مقدار تغير البيانات كبيرا، وينبغي زيادة معلمة الاتجاهات إذا كان اتجاه الاتجاه الأخير مدعوما بالعوامل المسببة لبعض العوامل. التنبؤ على المدى القصير: لاحظ أن كل جافاسكريبت في هذه الصفحة يوفر توقعات خطوة واحدة. للحصول على توقعات من خطوتين. ببساطة إضافة القيمة المتوقعة إلى نهاية لك البيانات سلسلة الوقت ثم انقر على نفس زر حساب. يمكنك تكرار هذه العملية لعدة مرات من أجل الحصول على التوقعات اللازمة على المدى القصير. في الممارسة، فإن المتوسط ​​المتحرك سيوفر تقديرا جيدا لمتوسط ​​التسلسل الزمني إذا كان المتوسط ​​ثابتا أو ببطء في التغير. وفي حالة المتوسط ​​الثابت، فإن أكبر قيمة m تعطي أفضل التقديرات للمتوسط ​​الأساسي. وستؤدي فترة المراقبة الأطول إلى الحد من آثار التباين. والغرض من توفير m أصغر هو السماح للتنبؤ بالاستجابة للتغيير في العملية الأساسية. ولتوضيح ذلك، نقترح مجموعة بيانات تتضمن التغييرات في الوسط الأساسي للمسلسلات الزمنية. ويبين الشكل السلاسل الزمنية المستخدمة للتوضيح مع متوسط ​​الطلب الذي نشأت منه السلسلة. يبدأ المتوسط ​​ك ثابت عند 10. يبدأ في الوقت 21، يزداد بوحدة واحدة في كل فترة حتى يصل إلى القيمة 20 في وقت 30. ثم يصبح ثابتة مرة أخرى. وتتم محاكاة البيانات بإضافة متوسط ​​الضوضاء العشوائية من التوزيع العادي مع متوسط ​​الصفر والانحراف المعياري 3. وتقريب نتائج المحاكاة إلى أقرب عدد صحيح. ويبين الجدول الملاحظات المحاكاة المستخدمة في المثال. عندما نستخدم الجدول، يجب أن نتذكر أنه في أي وقت من الأوقات، إلا أن البيانات السابقة معروفة. وتظهر تقديرات معلمة النموذج، بالنسبة إلى ثلاث قيم مختلفة من m، مع متوسط ​​السلاسل الزمنية في الشكل أدناه. ويبين الشكل متوسط ​​المتوسط ​​المتحرك للمتوسط ​​في كل مرة وليس التنبؤ. ومن شأن التنبؤات أن تحول منحنيات المتوسط ​​المتحرك إلى اليمين حسب الفترات. وهناك استنتاج واحد واضح على الفور من هذا الرقم. وبالنسبة للتقديرات الثلاثة جميعها، فإن المتوسط ​​المتحرك يتخلف عن الاتجاه الخطي، مع زيادة الفارق الزمني مع m. والفارق الزمني هو المسافة بين النموذج والتقدير في البعد الزمني. وبسبب الفارق الزمني، فإن المتوسط ​​المتحرك يقلل من الملاحظات نظرا لأن المتوسط ​​يتزايد. انحياز المقدر هو الفرق في وقت محدد في متوسط ​​قيمة النموذج والقيمة المتوسطة التي يتنبأ بها المتوسط ​​المتحرك. التحيز عندما يكون المتوسط ​​يزداد سلبيا. أما بالنسبة للمتوسط ​​المتناقص، فإن التحيز إيجابي. التأخر في الوقت والتحيز التي أدخلت في التقدير هي وظائف م. وكلما زادت قيمة m. وكلما كبر حجم التأخر والتحيز. لسلسلة متزايدة باستمرار مع الاتجاه أ. فإن قيم التأخر والتحيز لمقدر المتوسط ​​تعطى في المعادلات أدناه. لا تتطابق منحنيات المثال مع هذه المعادلات لأن نموذج المثال لا يزداد بشكل مستمر، بل يبدأ كتغيير ثابت للاتجاه ثم يصبح ثابتا مرة أخرى. كما تتأثر منحنيات المثال بالضوضاء. ويتمثل متوسط ​​المتوسط ​​المتحرك للتوقعات في المستقبل في تحويل المنحنيات إلى اليمين. ويزيد التأخر والتحيز تناسبيا. وتشير المعادلات أدناه إلى الفارق الزمني والتحيز لفترات التنبؤ في المستقبل عند مقارنتها بمعلمات النموذج. مرة أخرى، هذه الصيغ هي لسلسلة زمنية مع الاتجاه الخطي المستمر. ولا ينبغي لنا أن نفاجأ بهذه النتيجة. ويستند متوسط ​​التقدير المتحرك إلى افتراض متوسط ​​ثابت، والمثال له اتجاه خطي في المتوسط ​​خلال جزء من فترة الدراسة. وبما أن سلسلة الوقت الحقيقي نادرا ما تتوافق تماما مع افتراضات أي نموذج، يجب أن نكون مستعدين لمثل هذه النتائج. ويمكننا أيضا أن نخلص من الشكل إلى أن تباين الضوضاء له أكبر تأثير على m أصغر. ويكون التقدير أكثر تقلبا بكثير بالنسبة للمتوسط ​​المتحرك البالغ 5 من المتوسط ​​المتحرك البالغ 20. ولدينا رغبة متضاربة في زيادة m لتقليل تأثير التباين الناجم عن الضوضاء وتقليل m لجعل التنبؤ أكثر استجابة للتغيرات في الحقيقة. والخطأ هو الفرق بين البيانات الفعلية والقيمة المتوقعة. وإذا كانت السلسلة الزمنية حقا قيمة ثابتة، فإن القيمة المتوقعة للخطأ هي صفر، ويتألف تباين الخطأ من عبارة دالة وعبارة ثانية هي تباين الضوضاء. المصطلح الأول هو التباين في المتوسط ​​المقدر مع عينة من الملاحظات m، على افتراض أن البيانات تأتي من مجتمع ذو متوسط ​​ثابت. يتم تقليل هذا المصطلح من خلال جعل m كبيرة قدر الإمكان. A م كبير يجعل التوقعات لا تستجيب لتغيير في السلسلة الزمنية الأساسية. لجعل التنبؤات تستجيب للتغييرات، نريد m صغيرة قدر الإمكان (1)، ولكن هذا يزيد من التباين الخطأ. ويتطلب التنبؤ العملي قيمة وسيطة. التنبؤ مع إكسيل تقوم الوظيفة الإضافية للتنبؤ بتطبيق صيغ المتوسط ​​المتحرك. ويبين المثال الوارد أدناه التحليل الذي توفره الوظيفة الإضافية لعينة البيانات في العمود باء. ويتم فهرسة الملاحظات العشرة الأولى من 9 إلى 0. وبالمقارنة بالجدول أعلاه، يتم تغيير مؤشرات الفترة بمقدار -10. وتوفر الملاحظات العشرة الأولى قيم بدء التشغيل للتقدير وتستخدم لحساب المتوسط ​​المتحرك للفترة 0. ويبين العمود (10) (C) المتوسطات المتحركة المحسوبة. وتكون معلمة المتوسط ​​المتحرك m في الخلية C3. ويبين العمود (1) (D) توقعات لفترة واحدة في المستقبل. الفترة الزمنية المتوقعة في الخلية D3. عندما يتم تغيير الفاصل الزمني المتوقع إلى عدد أكبر يتم تحويل الأرقام في العمود فور إلى أسفل. ويبين العمود إر (1) (E) الفرق بين الملاحظة والتنبؤ. على سبيل المثال، الملاحظة في الوقت 1 هي 6. القيمة المتوقعة من المتوسط ​​المتحرك في الوقت 0 هي 11.1. الخطأ ثم -5.1. ويحسب الانحراف المعياري ومتوسط ​​الانحراف (ماد) في الخلايين E6 و E7 على التوالي.

No comments:

Post a Comment